导师介绍
毕文健 研究员

毕文健 研究员
北京大学基础医学院,医学遗传学系
联系方式
电话:+86-010-82805735
地址:北京海淀区学院路38号北京大学医学部
邮编:100191
Email: wenjianb@pku.edu.cn
研究兴趣
统计遗传学 — 全基因组关联分析 (genome-wide association studies); 电子健康档案 (electronic health record); 全表型组关联分析 (phenome-wide association studies); 罕见变异分析 (rare variants analysis); 次要表型分析 (secondary phenotype analysis).
生物统计与系统生物学 — 基因-环境交互作用分析 (gene-environment interaction analysis); 生存分析 (survival analysis); 多分类数据分析 (categorical data analysis); 广义线性混合模型 (generalized linear mixed model);
系统辨识与控制算法 — 集值模型 (set-valued model); 系统辨识 (system identification); 多个体系统 (multiagent systems).
学习经历
博士:中国科学院 数学与系统科学研究院 (Chinese Academy of Sciences, Academy of Mathematics and Systems Science),2010 - 2015
导师:张纪峰 研究员
本科:四川大学 (Sichuan University) 数学学院,2006 - 2010
工作经历
预聘制助理教授,研究员,博士生导师:北京大学基础医学院,2021年至今
北京大学博雅青年学者,国家级青年高层次人才计划入选者
博士后:美国密歇根大学 (University of Michigan),2018 - 2021
合作导师:Dr. Seunggeun (Shawn) Lee
研究方向:大型生物样本库的全表型组关联分析 (large-scale biobank data phenome-wide association studies);基因-环境交互作用分析 (gene-environment interaction analysis);生存分析与多分类数据分析 (survival analysis and categorical data analysis);
博士后:美国圣裘德儿童研究医院 (St. Jude Children’s Research Hospital),2015 - 2018
合作导师:Dr. Stanley Pounds and Dr. Guolian Kang
研究方向:次要表型分析 (secondary phenotype analysis);遗传模型选择 (genetic model selection).
研究方向
随着高通量测序技术、高精度成像技术以及电子健康记录系统的发展,生物医学进入了健康医疗信息化的大数据新时代。海量的生物医学大数据为系统生物学研究提供了丰富的研究资源。我们的研究工作涉及集值系统辨识、统计遗传学、系统生物学和生物医学大数据分析。
个人简介
毕文健,北京大学基础医学院医学遗传学系课题组长,预聘制助理教授,研究员,北京大学博雅青年学者,博士生导师,国家级青年高层次人才计划入选者。2010年本科毕业于四川大学数学学院,2015年博士毕业于中国科学院数学与系统科学院研究院,2015年至2018年在美国圣裘德儿童研究医院从事博士后研究,2018年至2021年在美国密歇根大学从事博士后研究,2021年6月入职北京大学基础医学院。
主要工作涉及统计遗传学、生物统计与系统生物学、生物信息学等,针对基因-环境交互作用、生存数据和多分类表型数据设计了多种快速、准确的分析算法,并应用于UK Biobank等大型生物样本库的实际数据中。以第一/通讯作者身份发表于Nature Genetics (2022), Nature Computational Science (2025), American Journal of Human Genetics (2019, 2020, 2021, 2023),Cell Reports Medicine (2025), Nature Communications (2025a, 2025b, 2025c), Genome Biology (2025), PLOS Genetics, Genetics, Biostatistics等学术杂志。主持国家自然科学基金海外优秀青年项目(300万)、智慧诊疗专项项目(145万)、面上项目(54万)、国际合作和交流项目(15万),北京市自然科学基金一般非共识创新项目(50万)等。
代表论著 (近五年)
期刊论文 (*共同第一作者,#共同通讯作者)
2025
1. Ying Li, Yuzhuo Ma, He Xu, Yaoyao Sun*, Min Zhu, Weihua Yue, Wei Zhou*, Wenjian Bi*, Applying weighted Cox regression to genome-wide association studies of time-to-event phenotypes. Nature Computational Science , 2025.
2. Yuzhuo Ma, Yanlong Zhao, Ji-Feng Zhang, Wenjian Bi*, Efficient and accurate framework for genome-wide gene-environment interaction analysis in large-scale biobanks. Nature Communications , 2025, 16: 3064. (中国科学院1区top)
3. He Xu, Yuzhuo Ma, Lin-lin Xu, Yin Li, Yufei Liu, Ying Li, Xu-jie Zhou,Wei Zhou, Seunggeun Lee, Peipei Zhang*, Weihua Yue*, Wenjian Bi*, SPAGRM: effectively controlling for sample relatedness in large-scale genome-wide association studies of longitudinal traits. Nature Communications , 2025, 16: 1413. (中科院1区top)
4. Yaoyao Sun, Yundan Liao, Yuyanan Zhang, Zhe Lu, Yuzhuo Ma, Zhewei Kang, Xiaoyang Feng, Guorui Zhao, Junyuan Sun, Yunqing Zhu, Rui Yuan, Yang Yang, Liangkun Guo, Xiao Zhang, Dai Zhang, Runsen Chen*, Wenjian Bi*, Weihua Yue*, Genome-wide interaction association analysis identifies interactive effects of childhood maltreatment and kynurenine pathway on depression. Nature Communications , 2025, 16: 1748. (中科院1区top)
5. Yuzhuo Ma, He Xu, Ying Li, Hyesung Kim, Lin-lin Xu, Lin Miao, Peng Xu, Fengbiao Mao, Xu-jie Zhou, Wei Zhou, Seunggeun Lee, Ji-Feng Zhang*, Peipei Zhang*, Wenjian Bi*, SPAmix: a scalable, accurate, and universal analysis framework for large‑scale genetic association studies in admixed populations. Genome Biology , 2025, https://doi.org/10.1186/s13059-025-03827-9.
6. Yaoyao Sun#, Guorui Zhao#, Yuyanan Zhang, Zhe Lu, Zhewei Kang, Junyuan Sun, Xiaoyang Feng, Jing Guo, Yundan Liao, Liangkun Guo, Yang Yang, Dai Zhang, Wenjian Bi*, Runsen Chen*, Weihua Yue*, Multitrait GWAS of non-suicidal self-injury and the polygenetic effects on child psychopathology and brain structures, Cell Reports Medicine , 2025, 6(5): 102119. (中科院1区top)
2024
7. Wenjian Bi*, Zhiyu Xu*, Feng Liu, Zhi Xie, Hao Liu, Xiaotian Zhu, Wenge Zhong, Peipei Zhang#, Xing Tang#, Genome-wide analyses reveal the contribution of somatic variants to the immune landscape of multiple cancer type, PLOS Genetics , 2024, 1: e1011134. (中科院2区top, 遗传学)
2023
8. Wenjian Bi#*, Wei Zhou*, Peipei Zhang, Yaoyao Sun, Weihua Yue, Seunggeun Lee#. Scalable mixed model methods for set-based association studies on large-scale categorical data analysis and its application to exome sequencing data in UK Biobank, American Journal of Human Genetics , 2023, 110(5): 762-773. (中科院1区top, 遗传学)
9. Yaoyao Sun, Yuyanan Zhang, Zhe Lu, Hao Yan, Liangkun Guo, Yundan Liao, Tianlan Lu, Lifang Wang, Jun Li, Wenqiang Li, Yongfeng Yang, Hao Yu, Luxian Lv, Dai Zhang, Wenjian Bi#, Weihua Yue#, Longitudinal Network Analysis Reveals Interactive Change of Schizophrenia Symptoms During Acute Antipsychotic Treatment. Schizophrenia Bulletin , 2023, 49(1): 208-217.
2022
10. Wei Zhou#* Wenjian Bi#*, Zhangchen Zhao*, Kushal K. Dey, Karthik A. Jagadeesh, Konrad J. Karczewski, Mark J. Daly, Benjamin M. Neale, Seunggeun Lee#, Set-based rare variant association tests for biobank scale sequencing data sets. Nature Genetics , 2022, 54 (10), 1466-1469. (中科院1区top, 遗传学)
11. Yongwen Zhuang, Brooke N Wolford, Kisung Nam, Wenjian Bi, Wei Zhou, Cristen J Willer, Bhramar Mukherjee, Seunggeun Lee. Incorporating family disease history and controlling case–control imbalance for population-based genetic association studies. Bioinformatics . 2022. 38(18): 4337-4343.
12. Xiaohui Shi, Huajing Teng, Leisheng Shi, Wenjian Bi, Wenqing Wei, Fengbiao Mao#, and Zhongsheng Sun#. Comprehensive evaluation of computational methods for predicting cancer driver genes. Briefings in Bioinformatics, 2022. (中科院1区, 生化研究方法)
13. Xiaolu Zhao*, Leisheng Shi*, Shasha Ruan*, Wenjian Bi, Yifan Chen, Lin Chen, Yifan Liu, Mingkun Li, Jie Qiao#, and Fengbiao Mao#. CircleBase: an integrated resource and analysis platform for human eccDNAs. Nucleic A cids Research , 2022, 50 (D1): D72-D82. (中科院1区, 生化与分子生物学)
2021
14. Wenjian Bi#, Wei Zhou, Rounak Dey, Bhramar Mukherjee, Joshua N Sampson, Seunggeun Lee# (2021), Efficient mixed model approach for large-scale genome-wide association studies of ordinal categorical phenotypes. A merican Journal of Human Genetics , 108(5), 825-839. (中科院1区top, 遗传学)
15. Wenjian Bi#, Seunggeun Lee# (2021), Scalable and robust regression methods for phenome-wide association analysis on large-scale biobank data. Frontiers in Genetics , 12, 960.
16. Peng Xu, Daniel C. Scott, Beisi Xu, Yu Yao, Ruopeng Feng, Li Cheng, Kalin Mayberry, Yong-Dong Wang, Wenjian Bi, Lance E. Palmer, Moeko T. King, Hong Wang, Yuxin Li, Yiping Fan, Arno F. Alpi, Chunliang Li, Junmin Peng, James Papizan, Shondra M. Pruett-Miller, Ria Spallek, Florian Bassermann, Yong Cheng, Brenda A. Schulman, Mitchell J. Weiss (2021), FBXO11-mediated proteolysis of BAHD1 relieves PRC2-dependent transcriptional repression in erythropoiesis. Blood , 137(2), 155–167.
2020
17. Wenjian Bi, Lars G. Fritsche, Bhramar Mukherjee, Sehee Kim, Seunggeun Lee (2020), A fast and accurate method for genome-wide time-to-event data analysis and its application to UK-Biobank. A merican Journal of Human Genetics , 107(2), 222-233. (中科院1区top, 遗传学)
18. Wenjian Bi, Yun Li, Matthew P. Smeltzer, Guimin Gao, Shengli Zhao, Guolian Kang (2020), STEPS: an efficient prospective likelihood approach to genetic association analyses of secondary traits in extreme phenotype sequencing. Biostatistics , 21(1), 33-49. (中科院1区top, 数学与计算生物学)
19. Hang Zhang*, Wenjian Bi*, Yuehua Cui, Honglei Chen, Jinbo Chen, Yanlong Zhao, Guolian Kang (2020), Extreme-value sampling design is cost-benefit only with valid statistical approach for exposure-secondary outcome association analyses. Statistical Methods in Medical Research , 29 (2), 466-480. (中科院2区, 数学与计算生物学)
20. Wei Zhou, Zhangchen Zhao, Jonas B Nielsen, Lars G Fritsche, Jonathon LeFaive, Sarah A Gagliano Taliun, Wenjian Bi, Maiken E Gabrielsen, Mark J Daly, Benjamin M Neale, Kristian Hveem, Goncalo R Abecasis, Cristen J Willer, Seunggeun Lee (2020), Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts. Nature Genetics . 52, 634-639. (中科院1区top, 遗传学)
21. Zhangchen Zhao, Wenjian Bi, Wei Zhou, Peter VandeHaar, Lars G Fritsche, Seunggeun Lee (2020), UK-Biobank whole exome sequence binary phenome analysis with robust region-based rare variant test. American Journal of Human Genetics , 106(1), 3-12. (中科院1区top, 遗传学)
22. Bing Bai, Xusheng Wang, Yuxin Li, Ping-Chung Chen, Kaiwen Yu, Kaushik Kumar Dey, Jay M. Yarbro, Xian Han, Brianna M. Lutx, Shuquan Rao, Yun Jiao, Jeffrey M. Sifford, Jonghee Han, Minghui Wang, Haiyan Tan, Timothy I. Shaw, Ji-Hoon Cho, Suiping Zhou, Hong Wang, Mingming Niu, Ariana Mancieri, Kaitlynn A. Messler, Xiaojun Sun, Zhiping Wu, Vishwajeeth Pagala, Anthony A. High, Wenjian Bi, Hui Zhang, Hongbo Chi, Vahram Haroutunian, Bin Zhang, Thomas G. Beach, Gang Yu, Junmin Peng (2020), Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer’s Disease Progression. Neuron , 105 (6), 975-991. (中科院1区top, 神经科学)
科研项目与奖励
2025 北京大学“医学+X”领航计划-人工智能与医学发展专项,主持,项目名称:以复杂疾病基因组数据为核心的遗传学智能化平台建设。资助金额:50万。
2024 北京自然科学基金一般非共识创新项目,主持,项目名称:整合参考基金组信息的全基因组关联分析算法研究。资助金额:50万。
2024 国家自然科学基金重大疾病智慧诊疗专项项目,主持。项目名称:基于多维临床诊疗数据的精神障碍智慧诊疗策略研究(联合申请A)。资助金额:145万。
2024 国家自然科学基金国际(地区)合作与交流项目,主持。项目名称:全基因组关联分析算法研究及其在东亚大型生物样本库中的应用。资助金额:15万。
2023 北京大学临床医学+X青年专项,参与。项目名称:基于“基因-脑-行为”多维度数据构建ADHD情绪失调与共患MDD的鉴别诊断模型。资助金额:11万。
2022 国家自然科学基金面上项目,主持。项目名称:基于鞍点近似方法的全基因组关联分析算法研究。资助金额:54万。
2021 中国自动化学会自然科学奖一等奖(排名第五)
2021 国家级海外青年高层次人才计划入选者(海外优青),主持。项目名称:针对生物医学大数据的建模与分析。资助金额:300万。
2021 “生物与信息融合(BT与IT融合)”科技部重点专项,骨干,资助金额:33万。
2017 IEEE International Conference on Bioinformatics and Biomedicine 2017, Travel Award
2014 国家奖学金
2014 中国科学院数学与系统科学研究院院长特别奖
2013 亚洲控制期刊 杰出审稿人
